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Suspension of solid particles in air flow is considered and flow critical velocity is deter- 
mined. A comparison is made of computational and experimental results. 

When designing engineer ing or  t r anspor ta t ion  s y s t e m s  with suspension flows i t  is essen t ia l  to have a 
c o r r e c t  de te rmina t ion  of the c r i t i ca l  veloci ty  of t r anspor ta t ion .  In the l i t e r a t u r e ,  by c r i t i ca l  veloci ty  (ob- 
s t ruc t ion  velocity) in horizontal  tubes one usual ly  unders tands  the veloci ty  of a e r o m i x t u r e  flow at  which 
pa r t i c l e  p rec ip i ta t ion  commences .  Somet imes  one comes  a c r o s s  a d i f ferent  definition of c r i t i ca l  veloci ty ,  
namely ,  defined as  the veloci ty a t  which buoyancy of the pa r t i c l e s  a t  the bot tom s t a r t s .  It  will be shown 
below that  both definit ions co r re spond  to different  l imi t ing  cases  of the p r o c e s s  of pa r t i c l e  suspension in 
a flow. The l a t t e r  expla ins  why dif ferent  exper imenta l  values  of c r i t i ca l  veloci t ies  a r e  obtained by var ious  
inves t iga tors  though the p r o p e r t i e s  of the t r anspo r t ed  m a t e r i a l s  a r e  v e r y  s im i l a r .  

In engineer ing plants  the bandwidth of the values  of Re for  pneumatic  t r anspor ta t ion  is usual ly  5 �9 104- 
5 �9 102. Then the flow motion becomes  turbulent  and the effect  of both the ave raged  and the pulsat ing motions 
of the c a r r i e r  agent  is checked by the solid pa r t i c l e s .  The mot ion of pa r t i c l e s  due to turbulent  pulsat ions 
of the agent  was analyzed in [1, 2]. The r e su l t s  show that  with the p a r t i c l e s '  s ize  or  densi ty  inc reas ing ,  the 
effect  of turbulent  pulsat ions of the c a r r i e r  agent  on the i r  mot ion is Seduced [2] ; for  pa r t i c l e s  whose s ize  
exceeds  0.1-0.2 m m  the turbulent  t r a n s f e r  in a i r  flow becomes  insignificant.  In this case  the mechan i sm 
of pa r t i c l e  buoyancy is re la ted  to the effect  of the field of full instantaneous flow ve loc i t i es ,  the o rde r  of 
the quantity of the buoyancy forces  being de te rmined  by the value of the ave raged  veloci ty  field a t  a given 
flow point;  the ef fec t  of turbulent  ve loci ty  pulsat ions  is a kind of random exci tat ion supe r imposed  on the 
bas ic  re la t ionship .  

A s ta t ionary  a e r o m i x t u r e  flow is now cons idered  which takes  p lace  in a s t r a igh t - l ine  hor izontal  tube 
of constant  c r o s s - s e c t i o n ;  the flow is in the d i rec t ion  of the x -ax i s  which is identical  with the bot tom of the 
tube (y = 0). M o r e o v e r ,  i t  is a l so  a s s u m e d  that  on the se lec ted  por t ion  the p r e s s u r e  different ial  is smal l  
and that  the a i r  compres s ib i l i t y  can be ignored (P0 = const),  

I t  follows f rom the assumpt ions  made above that Uep = cons t  and d U x / d x  = 0. M o r e o v e r ,  one has  
Uy = 0 for a s ta t ionary  one-d imens ional  flow in a tube. Since the re  a r e  no ave raged  ver t i ca l  veloci t ies  of the 
c a r r i e r  agent  and the pulsat ion veloci t ies  of the p a r t i c l e s  a r e  smal l  (for big pa r t i c l e s  the pulsa t ion v e lo c -  
i t ies  a r e  much s m a l l e r  than the turning veloci t ies)  the appea rance  of a buoyant force  in such flows can 
only be explained by the inhomogeneity of the veloci ty  field in a c r o s s - s e c t i o n .  

The re la t ion  between the buoyant force  and the veloci ty  gradient  was analyzed in [3, 4]; in [3], how- 
e v e r ,  a l inea r  veloci ty  prof i le  was a s s um ed  in the ana lys i s  which hardly  co r re sponds  to an  actual  flow p r o -  
fi le;  in [4] only a specia l  case  was cons idered  of a power  prof i le  with n = 1 / 7 .  M o r e o v e r ,  in both a r t i c l e s  
the effect  was  cons idered  of only the ave raged  veloci ty  field and the s tochast ic  c h a r a c t e r  of the turbulent  

flow had not been taken into account.  

A m o r e  general  case  will now be cons idered  by us;  it is a s s u m e d  in the f i r s t  approx imat ion  that v e l o c -  

ity turbulent  pulsa t ions  can be ignored.  

In a p lanar  c i r cu la to ry  flow with a veloci ty gradient  of a cyl indr ical  pa r t i c l e  there  a r i s e s  a force  which 

is pe rpend icu la r  to the flow di rec t ion  (the Magnus effect)." 
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where 

e~ = - 00 lull  r ,  (1) 

F=~ff(" O~/uOx d'Ux)oy do). 
o~ 

Similar ly as  in the case of pneumatic t ransporta t ion,  the par t ic le  dimensions a re  in most  eases  con-  
s iderably  smal le r  than those of the flow; therefore ,  at  a dis tance d it can be assumed that 0 U x / 0 y  ~ const. 
Then 

r = - - ~ -  o). 

For  a par t ic le  of length l one has Fy ~ 1. Consequently, 

dC 
F u --~ poG~ - - ~  ~ot. (2) 

Formula  (2) determines  the force act ing on a fixed par t ic le  in a flow. Applying (2) in the case of a 
par t ic le  at  the bottom of the tube one is able to determine the region of stable t ransporta t ion.  Such an ap-  
proach  is re la ted to a simplified schemat izat ion of the problem since the form of a par t ic le  is never cy l indr i -  
cal ;  also the flow pas t  a par t ic le  in a region near the bottom is different from the flow of unlimited s ize .  
However,  it will be shown below that such a schemat ized approach enables one to obtain computational fo r -  
mulas which agree  sa t i s fac tor i ly  with the experimental  data for  a wide range of tube diameters  and sizes 

of par t ic les .  

Stable t ranspor ta t ion  can take place if Fy > G. In the case  of Fy < G there is no buoyancy of par t ic les  
and there is no t ransporta t ion.  The case Fy = G descr ibes  the limiting par t ic le  equilibrium separat ing the 
t ranspor ta t ion  and nontransporta t ion of par t ic les ;  the cor responding  flow velocity can be regarded  as c r i t i -  

cal.  

We shall use the notation: Uave = V and [Ix = v for Fy = G. 

The distribution of the averaged flow velocit ies is given by the formula 

where in file general  case  n = f(Re). 

It  follows f rom the formula (3) that 

Then 

then 

ay  = o  

F~ = - - ~  P0 (U=) 2 c01, 

For  a par t ic le  in the region near the bottom one has y = d / 2  and y / R  = d / D .  

where a = Ps/ Po. 

G agD 

By setting Fy/G = i and Ux = v one obtains 

V agD d v= 2n D 

The Uma x velocity can be found f rom Uave [5]: 

a m a x  == ~lgave , 

Since G = m g  = psgwl 

(4) 

(5) 
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Fig. 1. Compar ison  of experimental  and computed 
values of cr i t ical  velocity ( m / s e c ) :  1) wheat, dave 
= 2.59 mm;  2) broken grain,  dav e = 2.08 mm;  3) fine 
gravel ,  dave = 2.4 mm;  4) sand, dave = 0.9 mm;  5) 
sand, dav e = 0.342 mm,  D = 61 mm (Welshof0; 6) 
wheat,  dave = 3 mm,  D = 113 mm (Zegler);  7) wheat, 
dave = 1.9 ram; 8) peas ,  dav e = 5.76 ram; 9) sand, dave 
= 0.42 ram; 10) sand, dave = 0.715 mm;  D = 125 mm 
(Dog-in and Lebedev); 11) rock,  dav e = 25-30 mm,  D 
= 150 mm (Mikhailov and Smoldyrev);  12) coal,  0-13 
mm,  D = 200 mm (the author and Kozhushko); 13) coal, 
0-1.25 mm ;  14) coal ,  1.25-2.5 mm;  15) sand, 0.14-0~315 
m m ;  16) sand, 0.315-0.63 mm,  D = 106 mm (the au thor ' s  
experiments) .  

where 

(n + 1) (n + 2) 

2 �9 

It  follows f rom (3) and (5) that 

U~ 

Employing (4) one finds the f low-averaged value of the cr i t ical  velocity,  

where  

~ n (n + l) (n + 2) 

For  the widest  range of Re numbers  encountered in prac t ice  one has.  

for 5.104 < Re_<105 , n = l / 7  

/ ~- 

v =1.53 ~ a g D  , (7) 

for 105 < R e - < 5 . 1 0 5  , n = 1 / 8  
/ 3 

(8) 

To determine the cr i t ical  veiocit ies for a var ie ty  of mater ia l s  experimental  investigations have been 
ca r r i ed  out in two setups .  In a labora tory  with a horizontal  tube of D = 106 mm the investigations were  
ca r r i ed  out of the t ranspor ta t ion of nar row fractions of coal (0-1.25 mm and 1.25-2.5 mm) and sand (014 -  
0.315 mm and 0.315-0.63 mm).  In a plant on a pneumat ic - t r anspor t  layout with a tube of D = 200 mm and 
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the length of the horizontal  route of 250 m the experiments  were  ca r r i ed  out with run-of -mine  coal of s ize 
0-13 ram. 

The experimental  values of cr i t ical  velocity Vexp (using the data of [6]-[9] and the average  exper i -  
mental  resu l t s  obtained by the a u t h o r ) a r e  compared  in Fig. 1 with the corresponding computed values 
of V using the formulas  (7) and (8). It can be seen from the data that there is a sufficiently good agreement  
between the computed values V and the average  values of cr i t ical  velocities obtained f rom the data of va r i -  
ous scientific workers though there is a smaller or greater amount of deviation in individual experimental 
points. The latter is due to the stochastic character of the turbulent flow. 

Since the formulas (7) and (8) were obtained only from a theoretical analysis and do not contain any 
empirical coefficients, it can be concluded that the satisfactory agreement of the computed and experi- 
mental data confirms the correctness of the initial theoretical model of a solid particle moving in flow. 

A shortcoming of the derived formulas lies in that the effect of the aeromixture concentration is 
ignored. For high concentrations there is a change in the velocity distribution in a flow cross-section as 
well as in the velocity gradient in the region near the bottom. It would thus be expedient to introduce in the 
formulas (7) and (8) a coefficient so that these changes are taken into account. 

Moreover, since the computation results are very close irrespective of whether the formula (7) or 
(8) is used, it is advisable to introduce only one unified formula suitable to be employed in engineering 
calculations. By using the average value of the theoretical coefficient (~z one obtains 

/ 3 
/ T 

V = l . 6 ~ e o n c ] /  agD (--~- ) , (9) 

where ~conc is an experimental coefficient with the effect of concentration taken into account. It is recom- 
mended that ~eonc = 1 for # -< 5 kg/kg and aconc= i.i for 5 < p -< i0 kg/kg. 

The motions of aeromixture and pure air are turbulent. It would thus appear that a statistical ap- 
proach based on probability of suspension of a particle would be a very general and natural approach. There- 
fore, we shall now consider as another approximation not the effect of the averaged flow velocities but of 
the actual instantaneous ones Ux; thus, at a given flow point Ux is regarded as a random time function. If 
Ux > u then the individual instantaneous values of velocity may prove less than critical and there is no 
buoyancy of the particle. Conversely, if Ux > v then there exists a nonvanishing probability of particle 

buoyancy at different instants. 

Therefore from the statistical point of view it is proper that one does not speak of critical velocity 

but of critical velocity interval. This critical interval incorporates the region v i < U x < v 2 in which the 
particle buoyancy probability is 0 < P0 < i. The above given two formulas for the critical velocity corre- 

spondto bothends of the critical interval, v 2 and v I. 

The statistical approach to particle suspension applicable to near-bottom drifts was used in the Ein- 

stein-Velikanov theory [I0]. However, a similar method is employed by us in a more suitable form. 
Following Velikanov, it is assumed that the instantaneous flow velocities are normally distributed. Then 
the probability of a particle break-away in terms of the integral distribution function is as follows: 

Po = P (Fu ~> G) = P (U x ~ v) = 1 - -  P (U~ < v) = I , - -  F (v), 

o r  

where 

Po ~ 1 - -  ~ 1  {' e-: '~ dz, (1 O) 1 2n d 

~ v - - U x  
gx 

The calculations using the formula (10) show that with an e r r o r  up to 1% for v 1 = v - 2 . 3  ax one has 

P0 = 0 and for v 2 = v + 2.3 ax one has P0 = 1. 
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Experimental investigations of airflow in tubes [ii] show that in the wall-adjacent region at the height 

of about 0.01 D one has ax = 0.15 Ux. Consequently, v I = 0.65v and v 2 = 1.35v and by using the formula (6) 
the limits are obtained of the critical range for the average flow velocity, 

VI = 0.65V and V 2 = 1.35V. 

Both bounds V I and V 2 of the critical range are shown in Figure I. It can be seen from the graph that 
all experimental results are within the critical band V I < Uav e < V 2. The middle straight line V = Vex p 
corresponds to P0 = 0.5 and is the central axis of the set of experimental points. 

Thus the motion of an aeromix~ure flow for velocities close to the critical interval has the following 
special properties: for Uav e < V I one has P0 = 0 and the particles are not blown away from the bottom; for 

Uav e > V 2 one has P0 = i and all particles are suspended; for V I < Uav e < V 2 one has 0 < P0 < 1 and the 
motion is unstable; a periodic deposition of the transported material takes place and the pressure pulsa- 
tions are considerable. 

To ensure that the operation of a pneumatic transport system is stable, the operational transportation 
velocity should exceed the upper bound of the critical interval. 
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NOTATION 

is the mean flow velocity; 

is the velocity at flow axis; 

are the projections of instantaneous velocity at an arbitrary flow point; 
are the projections for the average velocity; 

Is the critical velocity (average over section]; 

is the critical velocity (at flow point, also Ux = v for Uave = V); 
is the mean-square value of turbulent velocity pulsations; 
is the velocity c i rculat ion;  
Is the power index in formula for velocity prof i le ;  
is the buoyancy force  on par t i c le ;  
Is the tube d iameter ;  
is the radius of tube; 
Is the par t i c le  d iamete r ;  
is the a rea  of par t i c le  sect ion;  
is the par t i c le  mass ;  
is the pa r t i c l e  weight; 
is the par t i c le  length; 
xs the gravitational acce lera t ion;  
a r e  the density of a i r  and of solid pa r t i c les  respec t ive ly ;  
is the probabil i ty;  
is the par t i c le  separat ion probabil i ty;  
is the integral  dis tr ibut ion function; 
is the weight concentrat ion of ae romix tu re .  
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