DETERMINATION OF CRITICAL VELOCITY
OF SUSPENSION FLOW
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Suspension of solid particles in air flow is congidered and flow critical velocity is deter-
mined, A comparison is made of computational and experimental results.

When designing engineering or transportation systems with suspension flows it is essential to have a
correct determination of the critical velocity of transportation, In the literature, by critical velocity (ob~
struction velocity) in horizontal tubes one usually understands the velocity of aeromixture flow at which
particle precipitation commences. Sometimes one comes across a different definition of critical velocity,
namely, defined as the velocity at which buoyancy of the particles at the bottom starts, It will be shown
below that both definitions correspond to different limiting cases of the process of particle suspension in
a flow. The latter explains why different experimental values of critical velocities are obtained by various
investigators though the properties of the transported materials are very similar,

In engineering plants the bandwidth of the values of Re for pneumatic transportation is usually 5 - 10%-
5-10°. Then the flow motion becomes turbulent and the effect of both the averaged and the pulsating motions
of the carrier agent is checked by the solid particles. The motion of particles due to turbulent pulsations
of the agent was analyzed in [1, 2]. The results show that with the particles' size or density increasing, the
effect of turbulent pulsations of the carrier agent on their motion is reduced [2]; for particles whose size
exceeds 0.1-0.2 mm the turbulent transfer in air flow becomes insignificant. In this case the mechanism
of particle buoyancy is related to the effect of the field of full instantaneous flow velocities, the order of
the quantity of the buoyancy forces being determined by the value of the averaged velocity field at a given
flow point; the effect of turbulent velocity pulsations is a kind of random excitation superimposed on the
basic relationship.

A stationary aeromixture flow is now considered which takes place in a straight-line horizontal tube
of constant cross-section; the flow is in the direction of the x-axis which is identical with the bottom of the
tube (y = 0). Moreover, it is also assumed that on the selected portion the pressure differential is small
and that the air compressibility can be ignored (p, = const).

It follows from the assumptions made above that Ugp = const and dUx/dx = 0. Moreover, one has
Uy = 0 for a stationary one-dimensional flow in a fube. Since there are no averaged vertical velocities of the
carrier agent and the pulsation velocities of the particles are small (for big particles the pulsation veloc-
ities are much smaller than the turning velocities) the appearance of a buoyant force in such flows can
only be explained by the inhomogeneity of the velocity field in a cross-section.

The reldtion between the buoyant force and the velocity gradient was analyzed in [3, 4]; in [3], how-
ever, a linear velocity profile was assumed in the analysis which hardly corresponds to an actual flow pro-
tile; in [4] only a special case was considered of a power profile with n =1 /7. Moreover, in both articles
the effect was considered of only the averaged velocity field and the stochastic character of the turbulent
flow had not been taken into account,

A more general case will now be considered by us; it is assumed in the first approximation that veloc-
ity turbulent pulsations can be ignored.

In a planar circulatory flow with a velocity gradient of a cylindrical particle there arises a force which
is perpendicular to the flow direction (the Magnus effect):
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Similarly as in the case of pneumatic trangportation, the particle dimensions are in most cases con-
siderably smaller than those of the flow; therefore, at a distance d it can be assumed that 3Ux/ 0y ~ const.
Then

du,

E:_'dy

For a particle of length I one has Fy ~ 1. Consequently,

déi,x l. 2)
Formula (2) determines the force acting on a fixed particle in a flow, Applying (2) in the case of a
particle at the bottom of the tube one is able to determine the region of stable transportation. Such an ap-
proach is related to a simplified schematization of the problem since the form of a particle is never cylindri-
cal; also the flow past a particle in a region near the bottom is different from the flow of unlimited size.
However, it will be shown below that sucha schematized approach enables one to obtain computational for-

mulas which agree satisfactorily with the experimental data for a wide range of tube diameters and sizes
of particles.

Stable transportation can take place if Fy > G. In the case of Fy < G there is no buoyancy of particles
and there is no transportation. The case Fy = G describes the limiting particle equilibrium separating the

transportation and nontransportation of particles; the corresponding flow velocity can be regarded as criti-
cal.

We shall use the notation: Ugye = V and fIx = v for Fy =G.

The distribution of the averaged flow velocities is given by the formula

U, = Unax (%) , 3)
where in the general case n = f(Re).
1t follows from the formula (3) that
dy D "*\R ’
Then
=2 0 (L)

For a particle in the region near the bottom one has y=d/2 and y/R = d/D. Since G = mg = pggwl

then
By @y (4)
G =~ agD D ’

where a = pg/ py.

By setting Fy/G = 1 and TIX = v one obtains

- agD  d_
"“l/zn 4 ()

The Upax velocity can be found from Ugve [5]:

Umnax = “1Uave , (5)
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Fig. 1. Comparison of experimental and computed
values of critical velocity (m/sec): 1) wheat, dgve

= 2,59 mm; 2) broken grain, dyye = 2.08 mm; 3) fine
gravel, dave = 2.4 mm; 4) sand, dagve = 0.9 mm; 5)
sand, dgye = 0.342 mm, D = 61 mm (Welshoff); 6)
wheat, dave = 3 mm, D= 113 mm (Zegler); 7) wheat,
dave = 1.9 mm; 8) peas, daye = 5.76 mm; 9) sand, dave
= 0,42 mm; 10) sand, dgye = 0.715 mm; D = 125 mm
(Dogin and Lebedev); 11) rock, dyye = 25-30 mm, D
=150 mm (Mikhailov and Smoldyrev); 12) coal, 0-13
mm, D= 200 mm (the author and Kozhushko); 13) coal,
0-1.25 mm; 14) coal, 1.25-2,5 mm; 15) sand, 0.14-0.315
mm; 16) sand, 0,315-0.63 mm, D = 106 mm (the author's

experiments).

where

o = (n+1>2(n+2)

It follows from (3) and (5) that

U, (d)"
Uavém—o—: (f)_) :

Employing (4) one finds the flow-averaged value of the critical velocity,
dy™" L) T dye
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For the widest range of Re numbers encountered in practice one has:

where

for 5-10* < Re =10°, n=1/7

(6)

TR
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for 10° < Re =<5-10°, n=1/8
/N 3

\ 4

V= 1.677'// agD’ (7‘%):

(8)

To determine the critical velocities for a variety of materials experimental investigations have been

carried out in two setups. In a laboratory with a horizontal tube of D = 106 mm the investigations were

carried out of the transportation of narrow fractions of coal (0-1.25 mm and 1.25-2.5 mm) and sand (0.14-
0.315 mm and 0.315-0.63 mm), In a plant on a pneumatic~transport layout with a tube of D = 200 mm and
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the length of the horizontal route of 250 m the experiments were carried out with run-of-mine coal of size
0-13 mm,

The experimental values of critical velocity Vexp (using the data of [6]-[9] and the average experi-
mental results obtained by the author) are compared in Fig. 1 with the corresponding computed values
of V using the formulas (7) and (8). It can be seen from the data that there is a sufficiently good agreement
between the computed values V and the average values of critical velocities obtained from the data of vari-
oug scientific workers though there is a smaller or greater amount of deviation in individual experimental
points. The latter is due to the stochastic character of the turbulent flow.

Since the formulas (7) and (8) were obtained only from a theoretical analysis and do not contain any
empirical coefficients, it can be concluded that the satisfactory agreement of the computed and experi-
mental data confirms the correctness of the initial theoretical model of a solid particle moving in flow.

A shortcoming of the derived formulas lies in that the effect of the aeromixture concentration is
ignored. For high concentrations there is a change in the velocity distribution in a flow cross-section as
well as in the velocity gradient in the region near the bottom. It would thus be expedient to introduce in the
formulas (7) and (8) a coefficient so that these changes are taken into account.

Moreover, since the computation results are very close irrespective of whether the formula (7) or
(8) is used, it is advisable to introduce only one unified formula suitable to be employed in engineering
calculationg, By using the average value of the theoretical coefficient ¢, one obtains

S

/ T
V= 1.6a.pc ]/ agD (%) , (9)

where oegpe is an experimental coefficient with the effect of concentration taken into account, It is recom-
mended that agone = 1 for u =5 kg/kg and aeone = 1.1 for 5 < u = 10 kg/kg.

The motions of aeromixture and pure air are turbulent, It would thus appear that a statistical ap-
proach based on probability of suspension of a particle would be a very general and natural approach. There-
fore, we shall now consider as another approximation not the effect of the averaged flow velocities but of
the actual instantaneous ones Ux; thus, at a given flow point Ux is regarded as a random time function, If
{—IX > u then the individual instantaneous values of velocity may prove less than critical and there is no
buoyancy of the particle. Conversely, if Ux > v then there exists a nonvanishing probability of particle
buoyancy at different instants,

Therefore from the statistical point of view it is proper that one does not speak of critical velocity
but of critical velocity interval, This critical interval incorporates the region v, < Uy < v, in which the
particle buoyancy probability is 0 < Py < 1. The above given two formulas for the critical velocity corre-
spond to bothends of the critical interval, v, and vy,

The statistical approach to particle suspension applicable to near-bottom drifts was used in the Ein-
stein—Velikanov theory [10]. However, a gimilar method is employed by us in a more suitable form,
Following Velikanov, it is assumed that the instantaneous flow velocities are normally distributed. Then
the probability of a particle break-away in terms of the integral distribution function is as follows:

Py=P(F,>0) =PU,>v) = | —PU,<t) = —F(n),

or
L opx
s S L 10)

where

The calculations using the formula (10) show that with an error up to 1% for vy = v —2.3 gx one has
P,=0and for v, = v + 2.3 gx one has Py = 1.
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Experimental investigations of airflow in tubes [11] show that in the wall-adjacent region at the height

of about 0.01 D one has ¢x = 0.15 Ux. Consequently, vy = 0.65v and vy = 1,35v and by using the formula (6)
the limits are obtained of the critical range for the average flow velocity,

Vy = 0.65V and V, = 1.35V.

Both bounds V, and V, of the critical range are shown in Figure 1. 1f can be seen from the graph that
all experimental results are within the critical band V; < Ugye < V,. The middle straight line V = Vexp
corresponds to Py = 0.5 and is the central axis of the set of experimental points.

Thus the motion of an aeromixture flow for velocities close to the critical interval hag the following
special properties: for Uaye < V4 one has P = 0 and the particles are not blown away from the bottom; for
Uave > Vy one has Py = 1 and all particles are suspended; for V; < Ugye < Vg one has 0 < Py < 1 and the
motion is unstable; a periodic deposition of the transported material takes place and the pressure pulsa-
tions are considerable.

To ensure that the operation of a pneumatic transport system is stable, the operational transportation
velocity should exceed the upper bound of the critical interval,

NOTATION

Uave is the mean flow velocity;

Uinax is the velocity at flow axis;

Ux, Uy  are the projections of instantaneous velocity at an arbitrary flow point;
Ux, Uy  are the projections for the average velocity;

is the critical velocity (average over section);

is the critical velocity (at flow point, also Ux = v for Ugve = V),
is the mean-square value of turbulent velocity pulsations;
is the velocity circulation;

is the power index in formula for velocity profile;

is the buoyancy force on particle;

is the tube diameter;

is the radius of fube;

is the particle diameter;

is the area of particle section;

is the particle mass;

is the particle weight;

is the particle length;

is the gravitational acceleration;

0o s  are the density of air and of solid particles respectively;
is the probability; '

is the particle separation probability;

is the integral distribution function;

is the weight concentration of aeromixture,
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